Section 12.2 part 1
$F \subseteq K$ - field extension Gal $K=\{\sigma: K \longrightarrow K \backslash G(c)=c$ for every $c \in F$ y $\left.\begin{array}{ll}\text { field isomorphism } \\ \text { automorphism }\end{array} \quad \sigma\right|_{F}=$ identity reap

Intermediate fields
Galois Correspondence Subgroups

$$
F \subseteq E \subseteq k
$$

$$
\operatorname{Gal}_{E} K \subseteq \operatorname{Gal}_{F} K
$$

$$
\left.E_{H}=h k \in K \mid \sigma(k)=k \text { for every } \sigma \in H\right\} \quad H \subseteq G_{a} K
$$

fixed field of H
Extreme cases

In general, what may go noronly?

$$
E \leadsto H=\operatorname{Gal}_{E} K \leadsto E_{H} \quad \text { Clearly, } E_{H} \supseteq E
$$

Is every intermediate subfield the fixed field of some subgroul

However, elements of $\mathrm{Gal}_{E} K$ may fix a bigger subfield besides E $E_{H} \neq E$

$$
\begin{aligned}
& E=K \quad\langle c\rangle=\operatorname{Gal}_{K} K \subseteq G_{a l} K \\
& E=F \quad{\quad G a q_{F} K \subseteq G_{a l} K}^{=} \\
& F=B \quad K=Q(\sqrt[3]{2}) \quad \text { it may happen that } G_{a l} K \\
& \text { Gal } Q(\sqrt{2} \sqrt{2})=\langle\nu\rangle=G_{a l} \mathbb{Q}(\sqrt[3]{2}\rangle \text { fixes a subfield } E \supset F \text {. } \\
& \text { A(} \sqrt[3]{2} \text {) }
\end{aligned}
$$

of Gal FK? - No
Under which extra conditions the answer is YES? (Th12.9)

$$
\operatorname{Gap}_{F} K \geqslant H m E_{H} \leadsto \operatorname{Eal}_{E_{H}}
$$

Is every subgroup $H \subseteq \operatorname{Gal}_{F} K$ the Galois group of an intermediate field (Th 12.8)

Clearly, $H \subseteq \operatorname{Gal}_{E_{H}} K$
However, there may be elements of $\mathrm{Gal}_{E_{H}} K$ are not in H but still fix $_{H} E_{H}$

